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Abstract. TOSCA is a novel inelastic spectrometer operating on the pulsed neutron source ISIS (UK).
It covers a wide momentum and energy range, even though its kinematic region is close to a line in the
(k, E) plane. Its use is mainly intended for vibrational spectroscopy. However, taking advantage of its good
resolving power, we have carried out a test experiment aimed to use this instrument to measure the centre
of mass kinetic energy of molecular hydrogen. The experiment was successful and we have obtained the
translational kinetic energy of liquid and solid para-hydrogen improving the overall accuracy by almost
an order of magnitude with respect to previous determinations. The data are compared with the results
of a Path Integral Monte-Carlo simulations with almost perfect agreement. We have demonstrated that
TOSCA can be used for measuring the translational kinetic energy of small molecular systems, taking
advantage of the intrinsic incoherence that is introduced in the scattering process by the intra-molecular
transitions.

PACS. 61.12.Ex Neutron scattering techniques (including small-angle scattering) – 64.70.Dv Solid-liquid
transitions – 67.90.+z Other topics in quantum fluids and solids; liquid and solid helium dynamics

1 Introduction

Deep inelastic neutron scattering (DINS) is generally
used to determine the momentum distribution of simple
monoatomic systems. In fact, when the momentum trans-
ferred from the neutron to the target nucleus becomes so
large that the interference effects due to the correlation
between neighbours becomes negligible, then the incoher-
ent approximation holds and the process simply becomes
a sum of single-atom scattering events. Thus, the interme-
diate scattering function becomes:

F (k, t) =
(

1
N

)∑
i

〈exp {−ik · r̂i(0)} exp {ik · r̂i(t)}〉

(1)

where ~k is the momentum transfer, and r̂i(t) represents
the Heisenberg operator for the position of the target nu-
cleus i at time t. As the magnitude of |k| increases, in the
limit of |k| → ∞, the Impulse Approximation (IA) applies
which reduces the intermediate scattering function to [1]:

F (k, t)→ FIA(k, t) = exp
{

i
Er

~
t

}
〈exp {ik · vt}〉 (2)

a e-mail: zoppi@ieq.fi.cnr.it

where Er = ~2k2/2m is the recoil energy and v ≡ v(0) is
the velocity of the target particle at time t = 0. Within
the IA, the system is approximated by the ideal gas model
and the dynamic structure factor becomes simply:

S(k, ~ω) =
∫

dpn(p)δ(~ω −Er − ~k · p/m) (3)

where p = mv is the momentum of the target particle
and n(p) is the momentum distribution [2,3].

Within the validity range of the IA, one has a direct
experimental access to the momentum distribution of the
particles. This is of a marginal interest for classical sys-
tems, where the distribution of the momentum variable is
known to follow the classical Boltzmann statistics. How-
ever, it becomes of paramount importance in quantum
systems where Bose-Einstein or Fermi-Dirac statistics are
ruling the dynamic behaviour of the sample [4]. In partic-
ular, a direct access to the atomic momentum distribution
allows the determination of the single particle density ma-
trix by means of a simple Fourier transform.

A special case, where the application of the DINS
technique is also useful, is the transition region between
the classical and the quantum behaviour of simple dense
systems [5–20]. This is the region where the de Broglie
wavelength becomes sizeable but still does not exceed the
size of the molecular diameter. In this case, the exchange
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quantum statistics does not play an effective role and the
particles are still distinguishable. Here, the Boltzmann
statistics still applies, but the system cannot be consid-
ered classic any more as quantum diffraction effects play
a relevant role. At any rate, the second moment of the
momentum distribution gives a measure of the average ki-
netic energy of the particle and this quantity, in general, is
not simply given by the classical expression Ek = 3

2kBT .
A comprehensive review of the field can be found in refer-
ence [4]. More recent literature gives an account of the
experimental work done on condensed noble gas sys-
tems [5–7] and in particular on liquid 4He [8–16].

The results on liquid helium reported in reference [9]
show a very interesting feature, which is peculiar of a
quantum system. The experiment, carried out at constant
temperature, results in a behaviour of the single parti-
cle kinetic energy that increases by increasing the density
of the liquid. The density dependence of the kinetic en-
ergy in condensed systems is a direct consequence of the
Heisenberg uncertainty principle. By decreasing the vol-
ume available to the atomic wave function, the fluctua-
tion in the momentum space is increased and this results
in an increase of the mean atomic kinetic energy. Thus,
the density rise of the kinetic energy appears as a direct
consequence of the reduction of the free volume that is
available to each particle.

In a recent article [16] we have described the den-
sity behaviour of liquid and solid 4He on the isotherm
T = 6.1 K. In Figure 2 of reference [16] we reported the
experimental results for the kinetic energy of helium as a
function of the density. From the figure, it appears that the
solid phase data do not agree with the extrapolation that
can be inferred from the fluid phase data and that they are
characterized by a smaller value of the kinetic energy. In
fact, at fixed density, the kinetic energy in the solid phase
is lower than the corresponding value extrapolated from
the isotropic phase. Thus, we have shown that the density
behaviour of the kinetic energy is driven not only by the
free volume effect but, crossing the freezing transition, is
also influenced by the development of properties that are
somehow characteristic of the crystal structure.

It would be interesting to check whether this behaviour
is peculiar of helium or is a common feature of quantum
liquids. However, since the quantum properties of neon
are much smaller than those of helium, neon cannot be
considered for testing this hypothesis and the only left
alternative is with hydrogen. Unfortunately, previous ex-
perimental investigations aimed at measuring the trans-
lational kinetic energy of hydrogen have provided data
with rather large error bars [18,19]. Therefore, it would
be virtually impossible to test this effect using the same
instrument, or another one with a similar resolution.

2 The advantages of TOSCA

TOSCA is a crystal analyser inverse geometry spectrom-
eter [21]. The incident neutron beam extends on a rather
large energy range and the energy selection is carried out,
on the secondary neutron path, using the (002) Bragg

reflection of graphite single crystals at a nominal angle
of 45◦. This fixes the neutron energy to E1

∼= 3.6 meV.
Higher order Bragg reflections are filtered out by a thick
(15 cm) beryllium block cooled down to ∼ 50 K. This
geometry allows to cover an extended energy range, even
though the fixed position of the crystal analysers implies a
variation in |k| that is a monotonic function of E. The re-
solving power of TOSCA is rather good (∆E/E ∼ 2.5%)
and is due to improve in the next future. Moreover, the
extended spectral range makes this instrument a neu-
tron equivalent of a Raman spectrometer. Thus, intra-
molecular transitions can be easily observed with TOSCA,
well beyond the first vibrational transition of molecular
hydrogen (we remind that this is placed at 514.5 meV or
4 150 cm−1). However, due to the recoil energy, the ob-
served shifts are much greater on a neutron spectrometer.

The Raman spectrum of liquid hydrogen is charac-
terized by the intra-molecular transitions (rotations and
vibrations). However, on the Stokes (energy-loss) side of
each intra-molecular line, a side phonon band of inter-
molecular origin is visible [22], which originates from the
same mechanism that produces the broad, quasi-elastic,
band that is attributed to collective, multi-phonon, ex-
citations. Similar concepts can be applied to the neu-
tron scattering spectrum of molecular hydrogen. Here, the
fundamental difference between the quasi-elastic (no intra-
molecular transition is involved) and the inelastic con-
tribution (one or more intra-molecular transitions are
involved) is due to the different weight of the self and dis-
tinct translational components. In fact, in the quasi-elastic
spectrum, the Van Hove [23] formulation applies and the
contribution to S(k, ω) is a mixing of the two components,
as in any monatomic liquid. However, only the self term
contributes to the inelastic neutron spectrum [24].

In some sense, TOSCA can be considered the neutron
equivalent of an optical Raman spectrometer. However, in
this case, the momentum transfer changes with the energy
shift. In the low-energy region of the spectrum, the size
of the momentum transfer remains within limits that are
similar to the reciprocal of the intermolecular distances be-
tween neighbours. In this case, the self contribution to the
scattering function is known to carry information on the
velocity-velocity correlation function and the self-diffusion
coefficient [25]. In the high-energy region, the momentum
transfer grows to such an extent that the scattering func-
tion is expected to merge into the IA. Therefore, the spec-
trum carries information relative to the momentum distri-
bution of the centres of mass. Even though the transition
between the two regimes is not clearly defined, one would
guess that it lies beyond the first peak of the intermolecu-
lar S(k) (∼ 2 A−1) in the region where S(k) becomes ∼ 1
(i.e. k ∼ 6−8 A−1). The k-region spanned by TOSCA
goes well beyond this interval.

If pure liquid para-hydrogen is considered, the inelastic
neutron spectrum becomes extremely simple. Since the
transitions to the even states (J = 0 → J ′ = 2, 4, . . . )
are weighted by the small hydrogen coherent cross section,
their intensity is two orders of magnitude smaller than the
transitions to the odd states. Thus, the observed spectrum
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reduces, for any practical purpose, to the odd rotational
transitions (J = 0 → J ′ = 1, 3, . . . ). In addition, due
to the small moment of inertia of hydrogen, the rotational
transitions are well separated (J = 0 → J ′ = 1 implies
an energy jump of 14.7 meV, while J = 0 → J ′ = 3
corresponds to a jump of 88.2 meV). As a consequence,
the superposition of the different bands is small and each
band can be analysed separately.

If we focus our attention on the first rotational tran-
sition (J = 0 → J ′ = 1), the double differential cross
section is given by:

d2σ

dΩdω
=
k1

k0

σi

4π
Σ(k, ω)

=
k1

k0

σi

4π
|f(k)|20→1 Sself(k, ω)⊗ δ(ω − ω0→1) (4)

where σi is the hydrogen incoherent cross-section, f(k) is
the intra-molecular form factor and Sself(k, ω) is the self,
molecular, dynamic structure factor. The symbol ⊗ repre-
sents a convolution and δ is the Dirac delta-function. The
cross section can be evaluated along the kinematic path
of TOSCA to derive a theoretical distribution, provided a
suitable model is given for Sself(k, ω).

3 The experiment

The measurement was carried out at seven thermody-
namic points. Five were selected in the liquid phase and
two in the solid. After performing the background mea-
surements of the empty cryostat, we cooled the empty
container at the desired temperature (T = 17.2 K) and
we measured its time-of-flight (TOF) spectrum. Then, hy-
drogen was allowed to condense in the scattering cell.
This was made of aluminium, 1 mm thick walls, and
with cylindrical-slab geometry. The sample thickness was
1.5 mm and the cell diameter (50 mm) was a little larger
that the beam cross-section. The pressure of the gas han-
dling system was set to p = 0.43 bar in order to make sure
that the cell was filled with liquid (the vapour pressure at
T = 17.2 K is 0.36 bar).

At the bottom of the scattering container, out of the
neutron beam, we had inserted some powder of paramag-
netic catalyst made of Cr2O3 and γ–Al2O3 in order to ac-
celerate the transition rate from ortho- to para-hydrogen.
The relative concentration of the two species was mon-
itored looking at the scattering spectrum. In particular,
we could observe the progressive disappearance of the
J = 1 → J ′ = 1 transition, that is weighted by the inco-
herent cross section of the proton, from the quasi-elastic
portion of the spectrum. When this spectral component
was below the limit of detectability (in practice, masked
by the J = 0→ J ′ = 0 transition, that is weighted by the
coherent cross section of the proton) we assumed that the
equilibrium was reached. The equilibration process takes,
in our case, about 20 hours. The estimated concentra-
tion of para-hydrogen, based on the theoretical analysis,
is assumed to be 99.96%. Then, we started recording the
scattering spectrum up to an integrated proton current of
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Fig. 1. Experimental raw inelastic spectrum measured on liq-
uid para-hydrogen at T = 17.2 K and p = 0.43 bar. Each peak
represents a rotational transition starting from the ground level
J = 0. The transition to the even levels are weighted by the
small coherent cross-section, therefore only the transitions to
the odd levels J ′ = 1, 3, 5, 7 are visible. The small vertical
bars on the top of the graph represent the resolving power of
the spectrometer.

2 271 µAh. The following spectra were taken in a similar
way, after changing the temperature and pressure of the
sample, performing some short test spectra, to ensure that
the sample was thermodynamically stable.

The stability of the thermodynamic conditions during
the experiment was very good. The temperature fluctua-
tions never exceeded 0.1 K and the pressure stability was
strictly related to this value, thanks to the very good re-
alisation of the gas handling system. The densities of our
samples were derived according to reference [26]. The full
set of parameters characterizing the present experiment is
reported in Table 1.

4 Data analysis

The design of TOSCA is such to allow time-focusing on
the detector plane. However, the spread in the scattering
angles (ranging between ∼ 129◦ and ∼ 140◦) would im-
ply some deterioration of the instrument resolving power.
Therefore, we have analysed separately each detector spec-
trum. The final spectra, converted to energy shifts, where
eventually added together to improve the statistical accu-
racy.

Figure 1 shows the raw spectrum of liquid para-
hydrogen at T = 17.2 K and p = 0.43 bar. The rota-
tional transitions are shifted by the Doppler effect due
to the molecular recoil. Four rotational transitions are
clearly visible in the spectrum which correspond to the
intra- molecular transitions J = 0 → J ′ = 1, 3, 5, 7,
respectively. Despite the small thickness of the sample,
some multiple scattering was expected. A rough simula-
tion of this contribution suggests a smooth spectral shape,
slowly increasing with the energy transfer. Accordingly, we
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Table 1. Thermodynamic conditions of the measured hydrogen samples, including the theoretically calculated para-hydrogen
percentage, [p−H2], and neutron integrated current, I.C. The last two columns report the fitted centre of mass mean kinetic
energy, Eexp

k and the PIMC simulation results, Epimc
k . For the PIMC results we assume a uniform uncertainty of 0.6 K. The first

two lines refer to the solid phase, the others are relative to the liquid phase. The triple point temperature is TTP = 13.803 K.

T (K) n (nm−3) p (bar) [p−H2] (%) I.C. (µAh) Eexp
k (K) Epimc

k (K)

12.2(2) 26.02(2) 0.05(1) 100.00 1490 68 ± 2 70.0

13.2(2) 25.91(2) 0.09(1) 100.00 1792 69 ± 1 70.3

14.3(2) 22.91(6) 0.16(1) 99.99 2368 61 ± 1 57.4

15.7(2) 22.52(6) 0.24(1) 99.98 1917 60.0± 0.6 60.7

17.2(2) 22.10(6) 0.43(1) 99.96 2271 60.6± 0.6 61.2

19.2(2) 21.50(6) 0.82(1) 99.88 2310 62 ± 1 61.4

21.2(2) 20.83(9) 1.34(1) 99.71 1344 62 ± 2 61.9

analysed the data allowing for a polynomial background
of that shape.

The intermolecular structure factor of liquid para-
hydrogen has not been measured yet. However, we can
infer its main features from the corresponding quantity for
liquid deuterium [27]. In this case, S(k) becomes virtually
∼ 1 for values of k ≥ 6 A−1. The boundary between the
first and second transition lies at ∼ 130 meV, which cor-
responds to a momentum transfer k ∼ 9 A−1. We expect
that the J = 0 → J ′ = 3 transition is already fulfilling
the IA for the molecular centres of mass [18] or, at most,
final states effects (FSE) can be included as small correc-
tions [2]. Therefore, the spectrum beyond the first mini-
mum can be fitted using the IA, i.e. using equation (3).
In addition, we approximate the momentum distribution
of the translational motion by a Gaussian shape. This
is considered to be a good approximation for quantum
Boltzmann liquids. In fact, while for normal liquid he-
lium close to the λ-transition, or in the superfluid phase,
the Gaussian approximation is known to fail [10,13–15],
no such information is available at higher temperatures.
The Gaussian approximation is found to be in good agree-
ment with the experimental data in the case of liquid
neon [13,28].

For each raw-data spectrum, we have fitted the region
beyond the first minimum of the scattering function using
the IA and a Gaussian shape for the momentum distri-
bution. The energy position of the intra-molecular transi-
tions, as well as their relative intensities, were kept fixed
and we only allowed for the variation of a single overall
intensity factor and the width of the Gaussian shape (two
parameters). From the knowledge of the scattering angle,
and by means of the energy and momentum conservation
laws, it is possible to derive the dispersion relation E(k),
where E and k are the energy and the momentum transfer
at the peak positions. If the IA holds, the peak of the n-
th rotational excitation, E(n)

r , in the scattering function,
is placed at the recoil energy plus the excitation energy,
E0→n of the intra-molecular transition J = 0→ J ′ = n:

E(n)
r = ~2k2/2m+E0→n. (5)

Thus, leaving the recoil mass as a free parameter, a lin-
ear fit to the data should give the effective mass of the
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Fig. 2. Experimental inelastic spectrum measured on liquid
para-hydrogen at T = 14.3 K and p = 0.16 bar after multiple
scattering corrections. We do not consider the J = 0 → J ′ =
1 transition because in this case the Impulse Approximation
does not apply. The line represents the best fit to the data
using the Impulse Approximation and a Gaussian function for
the momentum distribution. From the fit we could extract the
centre of mass kinetic energy, Eexp

k .

scattering centre. In fact, in the k-region explored by the
present experiment (k > 9 A−1), the observed spectrum
appears very similar to the recoil spectrum of a monatomic
sample with the various peaks shifted because of the dif-
ferent intra-molecular transitions. The fitted mass turns
out m = (1.99 ± 0.01) amu., i.e. almost identical to the
molecular mass of hydrogen (2.016 amu). Similar values
for m, within the same statistical uncertainty (0.5%), were
obtained for the other thermodynamic states.

To close up, the Gaussian approximation for the mo-
mentum distribution, together with the IA for the dy-
namic structure factor, represent a very good approxima-
tion to the spectral shape beyond the first peak of the
spectrum. The result of the fitting is represented by the
continuous line in Figure 3.

In any case, from the width of the momentum dis-
tribution (the second moment) we could estimate the ki-
netic energy of the molecular centre of mass. The impor-
tant result of the present experiment is that the error bar
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Fig. 3. Recoil energies, E
(n)
r − E0→n, as a function of the

square of the momentum transfer from the spectrum of liquid
para-hydrogen at T = 14.3 K and p = 0.16 bar. The slope of
the linear fit (dashed line) is proportional to the inverse of the
recoil mass (see Eq. (5)) which turns out m = 1.99±0.01 amu.
This demonstrates that we measure, indeed, the centre-of-mass
kinetic energy.

attributed to this determination is improved almost by an
order of magnitude with respect to previous experimental
determinations going from an uncertainty of ∼ (6÷ 9) K
to the present uncertainty of ∼ 1 K.

5 Simulation

The computer simulations of liquid and solid para-
hydrogen were carried out using the same technique,
namely path integral Monte-Carlo (PIMC), that was used
in reference [29]. The intermolecular potential was as-
sumed to be pair-wise additive and the crystal lattice was
assumed to be hcp. Several specific pair potentials are
available in the literature and some recent experimental
results using light scattering suggest that the Schaefer and
Köhler potential [30] best represents the experimental re-
sults [31]. However, we used the semi-empirical model pro-
posed by Norman et al. [32] because it is given in analytic
form and the two isotropic components are very similar
in the two potentials. In fact, since the molecular wave
function for para-hydrogen in the ground level (ν = 0,
J = 0) is spherically symmetric, and this feature seems
to be conserved even in the condensed phases (at least at
not too high pressure), only the spherical component of
the potential was used in the simulation.

The number of classical particles was set to N = 108.
Although relatively small, this number should be suffi-
cient to describe single particle properties such as the ki-
netic energy, which is our main concern here. The particles
were assumed to obey Boltzmann statistics. All interac-
tions were truncated spherically at a cut-off equal to half
the minimum edge length of the box, and potential en-
ergies and pressures were corrected by integrating over a
uniform density beyond the cut-off. The thermodynamic

conditions were selected according to the temperature and
density of the experimental points (see Tab. 1).

In all cases but one, the number of beads on the ring
polymers (P , i.e. the Trotter number) was set P = 32.
In one case, this number was varied in order to test the
convergence of the simulations as a function of P . We
used P = 1, 4, 8, 16 and 32. The rate of convergence of
the results from the classical to the quantum mechanical
behaviour was analysed by plotting Ek as a function of
1/P . It turns out that P = 16 and P = 32 gave very
similar results. Therefore, we assume the P = 32 value as
the quantum limit and, from the difference between the
P = 16 and P = 32 values, we estimate an error of 0.6 K
for the simulation results.

Each simulation was started from a perfect hcp lat-
tice and consisted of 10 000×NM passes (i.e. moves per
particle), after a 5 000 × NM passes equilibration stage.
NM is the dilution factor; i.e. the number of passes per-
formed before analysing the next configuration. We used
NM = 5. Thus, averages were accumulated using 10 000
configurations out of each run that, in total, was obtained
accumulating N ×NM ×10 000 Monte-Carlo moves (plus
equilibration). The results of our simulation are reported
in the last column of Table 1.

6 Discussion and conclusions

The results for the translational kinetic energy of liquid
and solid para-hydrogen, that are reported in Table 1, are
in very good agreement with the PIMC simulation. The
two sets of data superimpose to each other within their
respective error bars (we assume a generalised uncertainty
of 0.6 K for the PIMC results).

Only in one case (T = 14.3 K, n = 22.91 nm−3) there
is an evident discrepancy between the experiment and the
simulation results. For this point the simulation was re-
peated and extended. Without changing the results, how-
ever. The reason for the discrepancy came out clearly by
comparing the radial distribution functions of the various
simulations. In fact, it turns out that the radial distribu-
tion function for the two solid state simulations are almost
exactly superimposed. The same happens for the g(r) in
the liquid state. However, the radial distribution function
for the point at T = 14.3 K, n = 22.91 nm−3, gives inter-
mediate values between the two. This means that, in the
simulation, this particular thermodynamic point, because
of the model potential that is only an imperfect repre-
sentation of the true one, happens to be in a meta-stable
situation between the liquid and the solid state. Due to
the smallness of the simulation sample, it is likely that a
clear phase separation could not be achieved in the rela-
tively short time of the simulation. At any rate, we cannot
rely on this simulation point for our comparisons.

In conclusion, we have shown that TOSCA can be ef-
fectively used to measure the translational kinetic energy
of molecular hydrogen in the condensed phases. The er-
ror bars associated with the present experimental deter-
mination are almost an order of magnitude better that
the previous ones. The experimental results have been
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compared with the PIMC simulation data of para-
hydrogen in the same thermodynamic conditions. The
agreement is very good and the two sets of data super-
impose to each other, within their respective estimated
errors.

We are confident that future planned experiments on
the same system, taken at constant temperature, will help
to shed some light on the general problem of the behaviour
of the kinetic energy of quantum liquids across the freezing
transition.

The superb technical assistance of the ISIS Instrument Division
of RAL is gratefully acknowledged.
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